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Abstract 

 Warmth exchange and peristaltic wave engendering of a Casson liquid in a no uniform tube with divider 

properties has been explored under long wavelength and low Reynolds number suppositions. The articulations for 

speed, stream capacity and temperature are gotten systematically. The outcomes for speed, stream capacity and 

temperature acquired in the examination have been assessed numerically and talked about quickly. The impacts of 

yield pressure, versatility, slip and non-consistency parameters on the peristaltic siphoning are seen through 

diagrams. The results got for the peristaltic stream qualities uncover many energizing practices that warrant further 

investigation of the impacts of divider properties on the stream of non-Newtonian liquids in a tube. 

Keywords:   Peristaltic wave; wall properties; Casson fluid. 

1. Introduction 

Peristaltic wave engendering is a strategy of transporting liquid from lower weight to higher weight. This 

peristaltic wave proliferation discovers its applications in science, medicinal and designing field. Further dependent 

on this guideline, modern peristaltic siphons are likewise structured. Numerous examinations on peristaltic stream 

wonder have been performed in cylinder and channels. The greater part of examinations in industry and science 

demonstrates that the liquid conduct is non-Newtonian. Henceforth a few scientists are focusing on the peristaltic 

stream of non-Newtonian liquids in cylinders and channels [1-3]. Casson [4] watched the wellness of Casson liquid 

for displaying blood and expressed that at low shear rates the yield worry for blood is nonzero. Srivastava and 

Srivastava [5] saw that the peristaltic transport of blood by thinking about blood as a two liquid framework (Casson 

and Newtonian liquids).  

Considering versatile property of the divider when the liquid is moving with the impact of peristalsis is 

fascinating reality to be taken note. Numerous examinations have been conveyed with stream of non-Newtonian 

liquids in versatile cylinders [6&7]. As the peristalsis happens by constriction and extension of divider, the divider 

must be of flexible in nature. Peristaltic transport of Hershel Bulkley liquid by considering the versatile properties 

of the channel [8] and the cylinder [9] have been watched. Vajravelu et. al. [10] considered on the peristaltic stream 

of casson liquid in a flexible cylinder.  

Peristaltic stream with warmth exchange has a few applications, for example, bio-heat conduction in tissues, 

oxygenation and hemodialysis, heat exchangers and sun powered vitality and so on. In perspective on these 

applications, numerous scientists researched on peristaltic stream with warmth exchange. In physiological liquid 

stream issues, it is exceptionally fundamental to think about versatile properties of the divider. 

Radhakrishnamacharya et. al [11] watched the impact of warmth exchange and divider properties on the peristaltic 

stream of Newtonian liquid. Later peristaltic stream of intensity law liquid with warmth exchange and divider 

impacts was examined by Hayat et. al [12]. Also, most extreme of the physiological organs like corridors, natural 

channels, throat, digestive system, cervical waterway are observed to be non-uniform. In perspective on these 

viable applications Lakshminarayana et. al [13] focused on the peristaltic stream of Bingham liquid in a non-

uniform channel with divider properties and warmth exchange. Nabil et. al [14] examined divider properties impact 

on the peristaltic movement of a couple pressure liquid with warmth and mass exchange through a permeable 

medium. As of late Lakshminarayana et. al [15] contemplated because of Slip, Divider Properties on Peristaltic 

Transport of a Directing Bingham liquid with warmth exchange. Impacts of warmth exchange on MHD peristaltic 

transport of dusty liquid in an adaptable channel was researched by Hayat and Javed [16].  
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The reason for the present paper is to examine the impact of slip and warmth exchange on the peristaltic 

stream of a Casson liquid in a non-uniform channel with adaptable dividers. Articulations for speed, stream 

capacity and temperature has been determined logically with long wave length and low Reynolds number 

suspicions. The liquid stream relies upon numerous physical articulations like divider properties, slip parameter, 

non-consistency parameter rand yield pressure. These impacts of parameters are talked about in detail through 

diagrams. Since Casson show intently depicts blood stream in physiological frameworks, the outcomes acquired 

have vital applications in cardiovascular framework. 

2. Mathematical Formulation 

Consider the peristaltic stream of a Casson liquid in a two-dimensional non-uniform channel limited by adaptable 

dividers (see physical model for subtleties) on which sinusoidal floods of moderate plentifulness are forced. The 

dividers are taken like extended layers. The geometry of the channel divider is given by 

2
( , ) ( ) Sin ( )y h x t d x a X ct




            (1)  

a is the amplitude,   is the wave length, d is the mean half width of the channel, 'm is the dimensional non-

uniformity  of the channel. 

The equations governing the motion for the present problem are 
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The governing equations of motion of the flexible wall may be expressed as 

*

0( )L h p p             (6) 

where *L  is an operator, which is used to represent the motion of stretched membrane with viscosity damping 

forces such that 
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Here  is the elastic tension in the membrane,  1m is the mass per unit area,  1c is the coefficient of viscous damping 

forces, 0p is the pressure on the outside surface of the wall due to the tension in the muscles. 

Continuity of stress at y h  and using  𝑥 – momentum equation yields 
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The non-dimensional governing equations after dropping primes, we get 
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Non-dimensional boundary conditions are  
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3. Solution of the Problem 

Using the long wavelength and low Reynolds number approximations, one can find from equations (12) to (16)  

that 
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Equation (20) shows that 𝑝 is not a function of  𝑦 
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On differentiating Eq. (19)  with respect to y , we get 
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From Eq. (16)  we get 
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The closed form solution for equation (22) using the boundary conditions (15), (17) and (23) can be obtained as 
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We find the upper limit of plug flow region using the boundary condition that 0yy    at 0y y  . It is given by 

2

0
0

B
y

A

 
           (25) 

Taking 0y y  in equation (24) and using the relation (25), we get the velocity in the plug flow region as  
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By using Equations (24) and (26), we get 
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By solving (21) with the help of equation (27) and (18) the temperature field is obtained as 
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Fig 1. Effect of 1E  on the velocity distribution  Fig 2. Effect of 2E  on the velocity distribution  

  
Fig 3. Effect of 3E  on the velocity distribution  Fig 4. Effect of m  on the velocity distribution 

  
Fig 5. Velocity Distribution for different 0  Fig 6. Velocity Distribution for different   
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Fig 7. Effect of Br  on the Temperature Fig 8. Effect of m  on the temperature 

  

Fig 9. Temperature profiles for different 0  Fig10. Effect of elastic parameters on 

Temperature profiles.  
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( III ) 

Fig. 11: Effect of 𝐸1 on Trapping (I) 1 0.5E   (II) 1 0.6E   (III) 1 0.8E   

 
 

(I ) ( II ) 

 
(III) 

Fig. 12: Effect of 𝐸2 on Trapping (I) 2 0.2E   (II) 2 0.4E   (III) 2 0.5E   
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(III) 

Fig. 13: Effect of 𝐸3 on Trapping (I) 3 0.1E   (II) 3 0.3E   (III) 2 0.5E   
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4. Discussions and Results  
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 Thus, we have seen that associated parameters   play an important role in the growth and decay of the 

trapping bolus.  These qualitative results may have some significance in understanding the transport of blood in 

the small blood vessels. 

5.  Conclusions 
 The present paper finds its application to the peristaltic flow of a non-Newtonian fluid with non-zero yield 

stress namely casson fluid to study the changes in the blood flow pattern when a catheter is inserted into a channel 

with flexible walls. In this application, we assume that the plug flow region represents catheter and the remaining 

non-plug flow region represents the fluid. 

The present study also deals with the Peristaltic motion of an yield stress fluid (Casson fluid which closely 

describes blood flow) in a two dimensional channel under the influence of wall properties.  The governing 

equations have been linearized under long wavelength approximation and analytical expressions for velocity and 

stream function have been derived.  The fluid model considers the yield stress parameter along with wall slope 

parameter, thus giving useful information about the blood flow characteristics.  The results are analyzed for 

different values of pertinent parameters namely rigidity  , stiffness  , viscous damping force  , non-uniform 

parameter   and yield stress  . Some of the interesting findings are : 

 The velocity increases with increasing values of the elastic parameters. 

 The velocity decreases with an increase in the yield stress in the plug flow as well as in  the non-

plug flow regions. 

 Streamline pattern shows that the size and number of the trapped bolus increases with increase in 

rigidity  , stiffness  , viscous damping force   of the wall. 

 The size of the trapped bolus decreases with increasing values of the yield stress. 
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